Lycée Saint-Louis TD 18 MPSI

Structures

Exercice 1:

Soit G un ensemble muni d'une loi de composition interne * associative tel que

- il existe un élément neutre à droite e i.e. $\exists e \in G : \forall q \in G, q * e = q$
- tout élément de G admet un inverse à droite par rapport à e i.e $\forall g \in G, \exists g' \in G: g*g' = e$

Montrer que G est un groupe.

Exercice 2:

1. Soit G un groupe tel que

$$\forall (x,y) \in G^2, (x*y)^2 = x^2 * y^2$$

Montrer que G est abélien.

2. Que dire d'un groupe tel que $\forall x \in G, x^2 = e$?

Exercice 3 : Soit H et K deux sous-groupe d'un groupe G. Montrer que $H \cup K$ est un groupe si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 4: Soit (G, \cdot) un groupe.

1. Pour tout $g \in G$, on pose ϕ_g qui va de G dans lui même et qui à un élément $x \in G$ fait correspondre l'élément gxg^{-1} . Montrer que ϕ_g est un automorphisme de G.

On dit que ϕ_g est un automorphisme intérieur.

2. Prouver que l'ensemble $Int(G) = \{\phi_g, g \in G\}$ des automorphismes intérieurs est un sous-groupe de $(Aut(G), \circ)$ et que l'application $g \mapsto \phi_g$ de G dans Int(G) est un morphisme de groupes.

Exercice 5 : Soit G un groupe possédant deux sous-groupes H_1 et H_2 tels que

$$G = H_1 H_2 = \{ h_1 * h_2, (h_1, h_2) \in H_1 \times H_2 \}$$

1. Montrer que tout élément de G s'écrit de façon unique comme le produit d'un élément de H_1 et d'un élément de H_2 si et seulement si $H_1 \cap H_2 = \{e\}$.

- 2. On suppose que cette condition est remplie et que tout élément de H_1 commute avec tout élément de H_2 . Montrer que G est isomorphe à $H_1 \times H_2$.
- 3. Réciproquement, montrer que si un groupe G est isomorphe à un produit de deux groupes $G_1 \times G_2$ alors il existe H_1 et H_2 deux sous-groupes de G tels que $G = H_1H_2$, $H_1 \cap H_2 = \{e\}$ et tout élément de H_1 commute avec tout élément de H_2 .

Exercice 6:

Soit G un ensemble non vide muni d'une loi de composition interne \ast associative tel que

$$\forall (a,b) \in G^2, \ \exists (x,y) \in G^2 \ : \ a*x = b \ \mathrm{et} \ y*a = b$$

Montrer que G est un groupe.

Exercice 7: Soit A un anneau et B une partie de A. Montrer que B est un sousanneau de A si et seulement si

$$-1_A \in B$$
 et $\forall (a,b) \in B, a+b \in B$ et $ab \in B$

Exercice 8:

1

- 1. Montrer que $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}, (a, b) \in \mathbb{Q}^2\}$ est un corps.
- 2. Montrer que $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}, (a, b, c, d) \in \mathbb{Q}^4\}$ est un corps.

Exercice 9 : Soit A un anneau. On dit qu'un élément x de A est nilpotent s'il existe $p \in \mathbb{N}$ tel que $x^p = 0$.

Dans ce cas, le plus petit entier p tel que $x^p = 0$ est appelé indice de nilpotence de x

- 1. Montrer que la somme de deux éléments nilpotents qui commutent est nilpotent.
- 2. Montrer que si 1-x est nilpotent, alors x est inversible et $1-x^{-1}$ est nilpotent. On suppose maintenant que $\mathbb{Q} \subset A$ et on définit l'exponentielle d'un élément x nilpotent d'indice p par

$$\exp(x) = \sum_{k=0}^{p-1} \frac{x^k}{k!}$$

3. Montrer que si x et y sont nilpotents et commutent, alors on a :

$$\exp(x+y) = \exp(x)\exp(y)$$