Limites

Dans tout ce chapitre, f est une fonction définie sur un intervalle I à valeurs dans \mathbb{R} . Dans la suite, on s'intéresse à l'existence d'une limite de f en $a \in \overline{\mathbb{R}}$ appartenant à I ou étant une extrémité de I. On notera $a \in \overline{I}$.

I. Limite d'une fonction en un point

1. Définitions (*)

Définition. Soit $a \in \overline{I}$.

— Si $a \in \mathbb{R}$, on dit que f admet une limite finie $\ell \in \mathbb{R}$ en a lorsque

$$\forall \varepsilon > 0, \ \exists \eta > 0 : \ \forall x \in I, \ |x - a| \le \eta \Rightarrow |f(x) - \ell| \le \varepsilon$$

— Si $a=+\infty$, on dit que f admet une limite finie $\ell\in\mathbb{R}$ en a lorsque

$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R} : \ \forall x \in I, \ x \ge M \Rightarrow |f(x) - \ell| \le \varepsilon$$

— Si $a = -\infty$, on dit que f admet une limite finie $\ell \in \mathbb{R}$ en a lorsque

$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R} : \ \forall x \in I, \ x \le M \Rightarrow |f(x) - \ell| \le \varepsilon$$

On note $f(x) \underset{x \to a}{\longrightarrow} \ell$.

Définition. Soit $a \in \overline{I}$.

— Si $a \in \mathbb{R}$, on dit que f tend vers $+\infty$ en a lorsque

$$\forall M \in \mathbb{R}, \ \exists \eta > 0 : \ \forall x \in I, \ |x - a| \le \eta \Rightarrow f(x) \ge M$$

— Si $a = +\infty$, on dit que f tend vers $+\infty$ en a lorsque

$$\forall M \in \mathbb{R}, \ \exists M' \in \mathbb{R} : \ \forall x \in I, \ x > M' \Rightarrow f(x) > M$$

— Si $a = -\infty$, on dit que f tend vers $+\infty$ en a lorsque

$$\forall M \in \mathbb{R}, \ \exists M' \in \mathbb{R} : \ \forall x \in I, \ x \leq M' \Rightarrow f(x) \geq M$$

On note $f(x) \underset{x \to a}{\to} +\infty$.

Définition. Soit $a \in \overline{I}$.

— Si $a \in \mathbb{R}$, on dit que f tend vers $-\infty$ en a lorsque

$$\forall M \in \mathbb{R}, \ \exists \eta > 0 : \ \forall x \in I, \ |x - a| < \eta \Rightarrow f(x) < M$$

— Si $a = +\infty$, on dit que f tend vers $-\infty$ en a lorsque

$$\forall M \in \mathbb{R}, \ \exists M' \in \mathbb{R} : \ \forall x \in I, \ x \geq M' \Rightarrow f(x) \leq M$$

- Si $a = -\infty$, on dit que f tend vers $-\infty$ en a lorsque

$$\forall M \in \mathbb{R}, \ \exists M' \in \mathbb{R} : \ \forall x \in I, \ x \leq M' \Rightarrow f(x) \leq M$$

On note $f(x) \underset{x \to a}{\longrightarrow} -\infty$.

Ces définitions sont lourdes alors que l'idée est la même dans les trois cas : si x est proche de a alors f(x) est proche de ℓ . Par soucis d'unification, on introduit la notion de voisinage.

2. Voisinages

Proposition. (*) Soit $u \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \overline{R}$ alors $\lim u = \ell$ si, et seulement si, pour tout voisinage \mathcal{V}_{ℓ} de ℓ , il existe un entier n_0 tel que $\forall n \geq n_0$, $f(x) \in \mathcal{V}_{\ell}$; c'est-à-dire si, et seulement si,

$$\forall V_{\ell} \in \mathcal{V}(\ell), \ \exists n_0 \in \mathbb{N} : \forall n \ge n_0, \ f(x) \in \mathcal{V}_{\ell}.$$

Proposition. (*) Soit $a \in \overline{I}$ et $\ell \in \overline{\mathbb{R}}$ alors f admet une limite ℓ en a si, et seulement si, pour tout voisinage \mathcal{V}_{ℓ} de ℓ , il existe un voisinage \mathcal{V}_{a} de a dans tel que $\forall x \in \mathcal{V}_{a} \cap I$, $f(x) \in \mathcal{V}_{\ell}$; c'est-à-dire si, et seulement si,

$$\forall V_{\ell} \in \mathcal{V}(\ell), \ \exists V_a \in \mathcal{V}(a) : \forall x \in \mathcal{V}_a \cap I, \ f(x) \in \mathcal{V}_{\ell}.$$

Définition. Soit $a \in \overline{I}$. On appelle voisinage de a dans I toute intersection de I et d'un voisinage de a.

Proposition. Soit $a \in \overline{I}$ alors tout voisinage de a dans I est non vide et non réduit à un point.

Définition. Soit $a \in \overline{I}$. On dit qu'une propriété sur f est vraie au voisinage de a si elle est vraie sur un voisinage de a dans I.

Proposition. Soit $a \in \overline{\mathbb{R}}$. L'intersection de deux voisinages de a est un voisinage de a.

Proposition. Soit $(a,b) \in \mathbb{R}^2$. Si $a \neq b$, alors il existe V_a un voisinage de a et V_b un voisinage de b disjoints.

II. Propriétés

Proposition. (*) Si f admet une limite $\ell \in \mathbb{R}$ en $a \in \overline{I}$ alors celle-ci est unique. On note $\ell = \lim_{x \to a} f(x)$ ou $\ell = \lim_a f$

Proposition. Si f admet une limite en $a \in I$ alors celle-ci est égale à f(a)

Proposition. (*) Si f admet une limite finie en $a \in \overline{I}$ alors f est bornée au voisinage de a.

Proposition. (*) Si f admet une limite strictement positive en $a \in \overline{I}$, alors f est strictement positive au voisinage de a.

Corolaire. Si f admet une limite l en $a \in \overline{I}$ et si M > l (resp. m < l), alors, au voisinage de a, f est majorée par M (rep. minorée par m).

Proposition. Si f est positive au voisinage de a et admet une limite en a alors cette limite est positive.

Corolaire. Si f est majorée par M (respectivement minorée par m) au voisinage de a et admet une limite en a alors $\lim_{m \to \infty} f \leq M$ (respectivement $\lim_{m \to \infty} f \geq m$).

Si f et g admettent des limites en a et si $f \leq g$ au voisinage de a alors $\lim_{a} f \leq \lim_{a} g$.

Remarque: Les inégalités strictes ne passent pas à la limite.

III. Limites à droite et à gauche

Définition. Soit $a \in \overline{I} \cap \mathbb{R}$ tel que a ne soit pas la borne droite de I. On dit que f admet une limite $\ell \in \overline{\mathbb{R}}$ à droite en a si $f_{|I \cap]a, +\infty[}$ admet une limite ℓ en a. **Remarque :** Pour que f admette une limite à droite en $a \in \overline{I}$, il faut que f soit définie à droite de a.

Remarque: Si $a = -\infty$, alors les notions de limites à droite en a et de limite en a coïncident.

Remarque: Si a = Inf(I) et si f n'est pas définie en a, alors les notions de limites à droite en a et de limite en a coïncident.

Si a = Inf(I) et si f est définie en a, alors les notions de limites à droite en a et de limite en a ne coïncident pas forcément.

Remarque : Comme $a \notin I \cap]a, +\infty[$, même si f est définie en a et admet une limite à droite en a, cette limite n'est pas nécessairement égale à f(a)

Par exemple, la fonction $f: x \mapsto E(-x)$ possède une limite à droite en 0 qui vaut -1 et pas f(0).

Traduction: (*)

— Si $\ell \in \mathbb{R}$ alors f admet une limite ℓ à droite en $a \in \overline{I}$ si

$$\forall \varepsilon > 0, \ \exists \eta > 0 : \ \forall x \in I, \ a < x \le a + \eta \Rightarrow |f(x) - \ell| \le \varepsilon$$

— Si $\ell = +\infty$ alors f admet une limite ℓ à droite en $a \in \overline{I}$ lorsque

$$\forall M \in \mathbb{R}, \ \exists \eta > 0 : \ \forall x \in I, \ a < x < a + \eta \Rightarrow f(x) > M$$

— Si $\ell = -\infty$ alors f admet une limite ℓ à droite en $a \in \overline{I}$ lorsque

$$\forall M \in \mathbb{R}, \exists \eta > 0 : \forall x \in I, a < x < a + \eta \Rightarrow f(x) < M$$

Proposition. Si f admet une limite $\ell \in \mathbb{R}$ à droite en $a \in \overline{I}$ alors celle-ci est unique. On note $\ell = \lim_{x \to a. \ x>a} f(x)$ ou $\ell = \lim_{a^+} f$

Définition. On dit que f admet une limite $\ell \in \mathbb{R}$ à gauche en $a \in \overline{I} \cap \mathbb{R}$ si $f_{|I\cap]-\infty,a[}$ admet une limite ℓ en a.

Remarque : Pour que f admette une limite à gauche en $a \in \overline{I}$, il faut que f soit définie à gauche de a.

Traduction:

— Si $\ell \in \mathbb{R}$ alors f admet une limite ℓ à gauche en $a \in \overline{I}$ si

$$\forall \varepsilon > 0, \ \exists \eta > 0 : \ \forall x \in I, \ a - \eta \le x < a \Rightarrow |f(x) - \ell| \le \varepsilon$$

— Si $\ell = +\infty$ alors f admet une limite ℓ à gauche en $a \in \overline{I}$ lorsque

$$\forall M \in \mathbb{R}, \ \exists \eta > 0 : \ \forall x \in I, \ a - \eta \le x < a \Rightarrow f(x) \ge M$$

— Si $\ell = -\infty$ alors f admet une limite ℓ à gauche en $a \in \overline{I}$ lorsque

$$\forall M \in \mathbb{R}, \ \exists \eta > 0 : \ \forall x \in I, \ a - \eta \le x < a \Rightarrow f(x) \le M$$

Proposition. Si f admet une limite $\ell \in \mathbb{R}$ à gauche en $a \in \overline{I}$ alors celle-ci est unique. On note $\ell = \lim_{x \to a, \ x < a} f(x)$ ou $\ell = \lim_{a \to a} f(x)$

Proposition. (*) Si a est un point intérieur de I, alors f a une limite en a si et seulement si f a des limites à droite et à gauche en a qui sont égales à f(a).

Extension: Soit f définie sur $I \setminus \{a\}$.

On dit que f admet une limite à gauche (resp. à droite) en a si $f_{|I\cap]-\infty,a[}$ (resp. $f_{|I\cap]a,+\infty[}$) admet une limite en a admet une limite ℓ en a.

On dit que f admet une limite en a si elle admet des limites à droite et à gauche en a qui sont égales.

Exemple:
$$x \mapsto \frac{\sin x}{x}$$

IV. Opérations sur les limites

Théorème. Caractérisation séquentielle (*) Soit $a \in \overline{I}$ alors f admet une limite $\ell \in \overline{\mathbb{R}}$ si et seulement si

$$\forall u \in I^{\mathbb{N}}, \ \lim u = a \Rightarrow \lim f(u_n) = \ell$$

Proposition. Soit f et g admettant des limites $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$ en $a \in \mathbb{R}$ et $si \ \ell + \ell'$ n'est pas une forme indéterminée, alors $\lim_{a} (f+g) = \ell + \ell'$.

Proposition. Si $\lim_{a} f = +\infty$ et si g est minorée au voisinage de a alors $\lim_{a} (f+g) = +\infty$.

Corolaire. $Si \lim_{a} f = -\infty$ et si g est majorée au voisinage de a alors $\lim_{a} f + g = -\infty$.

Proposition. Soit f et g admettant des limites $\ell \in \mathbb{R}$ et $\ell' \in \mathbb{R}$ en $a \in \mathbb{R}$ et si $\ell\ell'$ n'est pas une forme indéterminée, alors $\lim(fg) = \ell\ell'$.

Théorème. Soit f et g telles $\lim_{a} f = +\infty$ et que g soit minorée au voisinage de a par m > 0 $alors \, \lim_a fg = +\infty.$

Proposition. Si $\lim_{a} f = \ell \in \mathbb{R}^*$ alors 1/f est définie au voisinage de a et $\lim_{a} \frac{1}{f} = \frac{1}{\ell}$.

Proposition. Si $\lim_{a} |f| = +\infty$ alors 1/f est définie au voisinage de a et $\lim_{a} \frac{1}{f} = \frac{1}{\ell}$.

Proposition. Si f ne s'annule pas au voisinage de $a \in \overline{I}$ et si $\lim_{a} f = 0$ alors $\lim_{a} \left| \frac{1}{f} \right| = +\infty$.

Théorème. Soient f et g respectivement définies sur I et J telles $f(I) \subset J$. $Si \lim_a f = \ell \ et \lim_\ell g = \ell' \ alors \lim_a g \circ f = \ell'$

V. Théorème d'existence de limites

Théorème. Théorème d'encadrement

Si $f \leq g \leq h$ au voisinage de a et si $\lim_{a} f = \lim_{a} g = \ell \in \mathbb{R}$ alors $\lim_{a} f = \ell$.

Théorème. Théorème de comparaison

Si $f \leq g$ au voisinage de a et si $\lim_a f = +\infty$ alors $\lim_a g = +\infty$. Si $f \leq g$ au voisinage de a et si $\lim_a g = -\infty$ alors $\lim_a f = -\infty$.

Théorème. Théorème de la limite monotone : (*)

Soit f croissante sur I. Notons $s = \sup(I)$ (resp. $i = \inf(I)$) si I est majoré et $s = +\infty$ (resp. $i = -\infty$) sinon. On a alors:

- f admet une limite à quuche en s. Cette limite est finie et équle à $\sup\{f(x), x \in I \cap]-\infty, s[\}$ $si\ f\ est\ major\'ee\ et\ \'egale\ \grave{a}\ +\infty\ sinon.$
- f admet une limite à droite en i. Cette limite est finie et égale à $\inf\{f(x), x \in I \cap [i, +\infty[\}$ $si\ f\ est\ minor\'ee\ et\ \'egale\ \grave{a}\ -\infty\ sinon.$
- f admet une limite à droite et à gauche en tout point intérieur de I et $f(a^-) \leq f(a) \leq$ $f(a^+)$.

Remarque : Si f est croissante et définie en s, alors, elle possède une limite finie à gauche en scar f est alors majorée par f(s).

VI. Extension aux fonctions complexes

Dans cette partie f est une fonction définie sur I valeurs dans \mathbb{C} .

Définition. Soit $a \in \overline{I}$.

— Si $a \in \mathbb{R}$, on dit que f admet une limite finie $\ell \in \mathbb{C}$ en a lorsque

$$\forall \varepsilon > 0, \ \exists \eta > 0 : \ \forall x \in I, \ |x - a| \le \eta \Rightarrow |f(x) - \ell| \le \varepsilon$$

— Si $a = +\infty$, on dit que f admet une limite finie $\ell \in \mathbb{C}$ en a lorsque

$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R} : \ \forall x \in I, \ x \geq M \Rightarrow |f(x) - \ell| \leq \varepsilon$$

— Si $a = -\infty$, on dit que f admet une limite finie $\ell \in \mathbb{C}$ en a lorsque

$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R} : \ \forall x \in I, \ x \leq M \Rightarrow |f(x) - \ell| \leq \varepsilon$$

On note $f(x) \underset{x \to a}{\longrightarrow} \ell$.

Remarque : La définition ne change pas mais cette fois, |.| désigne le module et plus la valeur absolue.

Remarque : Pour une fonction à valeurs complexes, on n'écrit pas $\lim_a f = +\infty$ mais on peut écrire $\lim_a |f| = +\infty$

Proposition. Si f admet une limite $\ell \in \mathbb{C}$ en $a \in \overline{I}$ alors celle-ci est unique. On note $\ell = \lim_{x \to a} f(x)$ ou $\ell = \lim_{a} f$

Proposition. Si f admet une limite en $a \in I$ alors celle-ci est égale à f(a)

Proposition. Si f admet une limite finie en $a \in \overline{I}$ alors f est bornée au voisinage de a.

Théorème. Soit $a \in \overline{I}$ et $\ell \in \mathbb{C}$ alors

$$\lim_a f = \ell \quad \Leftrightarrow \quad \begin{cases} \lim_a Re \ f = Re \ \ell \\ \lim_a Im \ f = Im \ \ell \end{cases}$$

Proposition. Soit f et g admettant des limites complexes ℓ et ℓ' en $a \in \overline{\mathbb{R}}$ alors $\lim_a f + g = \ell + \ell'$ et $\lim_a fg = \ell\ell'$.

Proposition. Si $\lim_{a} f = \ell \in \mathbb{C}^{*}$, alors la fonction $\frac{1}{f}$ est correctement définie au voisinage de a $et \lim_{a} \frac{1}{f} = \frac{1}{\ell}$.

VII. Comparaison de fonctions

Dans cette section, on s'intéresse à des fonctions définies au voisinage de $a \in \mathbb{R}$ mais pas nécessairement en a.

Elles sont donc définies sur \mathcal{D} de la forme [a-h,a+h] ou $[a-h,a+h]\setminus\{a\}$ ou [a,a+h] ou [a-h,a] ou [a-h,a[si $a\in\mathbb{R}$, ou de la forme $[M,+\infty[$ si $a=+\infty$ ou de la forme $]-\infty,M[$ si $a=-\infty.$

On se limite à des fonctions ne s'annulant pas sur \mathcal{D} .

1. Fonctions dominées

Définition. On dit que f est dominée par la fonction g au voisinage de a lorsque la fonction f/g est bornée au voisinage de a.

Proposition. $f = O(1) \Leftrightarrow f \text{ est born\'ee au voisinage de a}$

Proposition. Si f = O(g) et $\lim_{a} g = 0$ alors $\lim_{a} g = 0$.

Proposition. Transitivité

$$f = O(g)$$
 et $g = O(h)$ \Rightarrow $f = O(h)$

Proposition. Combinaison linéaire

$$f = O(h)$$
 et $g = O(h)$ \Rightarrow $\forall (\lambda, \mu) \in \mathbb{C}^2$, $\lambda f + \mu g = O(h)$

Proposition. Produit

$$f = O(g)$$
 et $h = O(\phi)$ \Rightarrow $fh = O(g\phi)$

Proposition. Quotient Soit f et g deux fonctions ne s'annulant pas au voisinage de a, alors

$$f = O(g) \quad \Leftrightarrow \quad \frac{1}{q} = O\left(\frac{1}{f}\right)$$

Proposition. Puissance positive

Soit f et g deux fonctions strictement positives au voisinage de a et $\alpha \in \mathbb{R}^{+*}$ alors

$$f = O(g) \Leftrightarrow f^{\alpha} = O(g^{\alpha})$$

2. Fonctions négligeables

Définition. On dit que f est dominée par la fonction g au voisinage de a lorsque $\lim_a f/g = 0$.

Proposition. $f = o(1) \Leftrightarrow \lim_a f = 0$

Propriétés similaires aux fonctions dominées

Proposition. Croissance comparées

$$\forall (\alpha, \beta) \in \mathbb{R}^{+*} \times \mathbb{R}, \quad (\ln x)^{\beta} \underset{\infty}{=} o(x^{\alpha})$$

$$\forall (\alpha, \lambda) \in \mathbb{R} \times \mathbb{R}^{+*}, \quad x^{\alpha} \underset{\infty}{=} o(e^{\lambda x})$$

$$\forall (\alpha, \beta) \in \mathbb{R}^{+*} \times \mathbb{R}, \quad |\ln x|^{\beta} \underset{\infty}{=} o\left(\frac{1}{x^{\alpha}}\right)$$

3. Fonctions équivalentes

Définition. On dit que f est équivalente à la fonction g au voisinage de a si $\lim_a f/g = 1$. On note $f \sim g$

Proposition. La relation $\sim est$ une relation d'équivalence

Proposition. On a $f - g = o(f) \Leftrightarrow f \sim g$.

Propriétés similaires aux fonctions dominées équivalent d'un polynôme en 0 et $+\infty$, équivalent d'une fraction rationnelle

Proposition. Si les fonctions f et g sont équivalentes au voisinage de a alors elles sont de même signe au voisinage de a.

Proposition. Si $f \sim_a g$ et $\lim_a f = \ell$, alors $\lim_a g = \ell$

Proposition. Soit $\ell \in \mathbb{C}^*$ alors $f \sim \ell \iff \lim_a f = \ell$

Remarque : $f \sim 0$ signifie que f est nulle au voisinage de a. Si l'on tombe sur ce résultat c'est surement que l'on a fait une erreur comme sommer ou soustraire des équivalents.

Remarque : Ne jamais sommer des équivalents. Quand on veut sommer il faut repasser par des o.

Proposition. Si f est dérivable en a et si $f'(a) \neq 0$ alors $f(x) - f(a) \underset{a}{\sim} f'(a)(x-a)$

Proposition. (*) $\sin x \sim x$, $\tan x \sim x$, $\ln(1+x) \sim x$, $\exp(x) - 1 \sim x$, $(1+x)^{\alpha} - 1 \sim \alpha x$

Proposition. (*) $\cos x - 1 \sim -\frac{x^2}{2}$